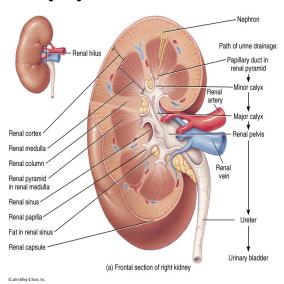
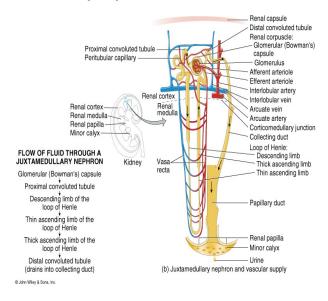

Bio& 242: Unit 2 / Lecture 1

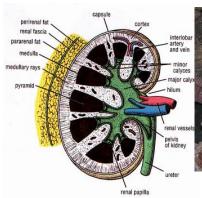
Major Functions of the Kidneys and the Urinary System


- 1. Regulation of blood ionic composition
- 2. Maintenance of blood osmolarity
- 3. Regulation of blood volume
- 4. Regulation of blood pressure
- 5. Regulation of blood pH

© John Wiley & Sons, Inc.


Major Functions of the Kidneys and the Urinary System

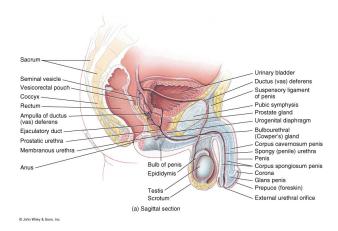
- 6. Release of hormones calcitriol active form of Vitamin D, helps control calcium homeostasis. erythropoietin stimulates RBC production
- 7. Regulation of blood glucose levels via gluconeogenesis



Major Functions of the Kidneys and the Urinary System

8. Excretion of wastes and foreign substances

Location of the kidney


- SMA LRV AA LK IMA* ARA
- Three layers of tissue surround each kidney:
- 1. renal fascia (outermost layer)
- 2. adipose capsule (middle layer)
- 3. renal capsule (innermost layer)

The Kidney is Retroperitoneal: In a pocket of the parietal Peritoneum against the dorsal wall of the abdomen.

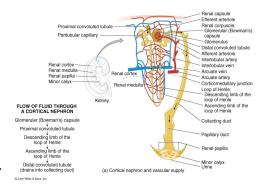
The Male Urethra

Specializations of the male urethra:

- 1. Prostatic urethra
- 2. Membranous urethra
- 3. Penile urethra

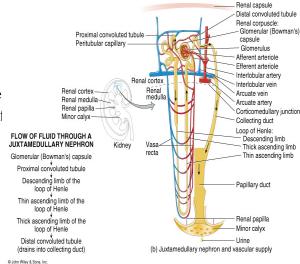
Urology: The branch of Medicine related to health care of the male and female Urinary system (Bladder and urethra) and the male reproductive system is called.

Nephron: The Functional Unit of the Kidneys

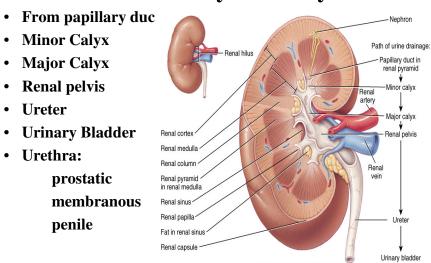

Nephrology: The specialized branch of medicine that deals with structure, function of the Kidney in urine formation.

Cortical Nephrons:

80 to 85% of nephrons. Have short Loops of Henle that lay mainly in the cortex


Juxtamedullary Nephrons:

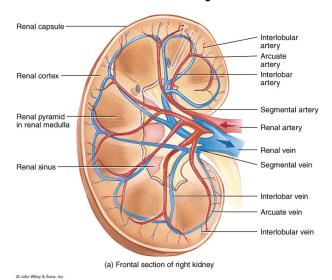
15 to 20% of nephrons. Have long Loops of Henle that extend into the deepest regions of the medulla. Produce the most concentrated urine.



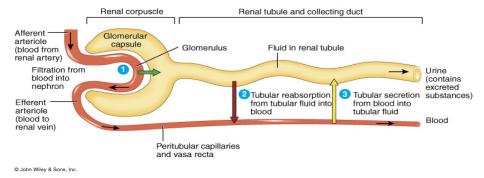
The Anatomy of a Nephron

- Subdivision of a Nephron:
- 1. Renal Corpuscle
- 2. Proximal Convoluted tubule
- 3. Descending Loop of Henle
- 4. Ascending Loop of Glomerular (Bowman's) capsule Henle
- 5. Distal Convoluted tubule
- 6. Collecting duct
- 7. Papillary duct

Urine Drainage through the Kidney and body

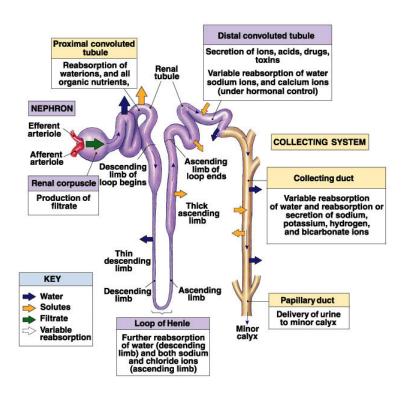


@ John Wiley & Sons, Inc.

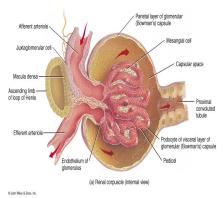


Blood flow through the Kidney

(a) Frontal section of right kidney



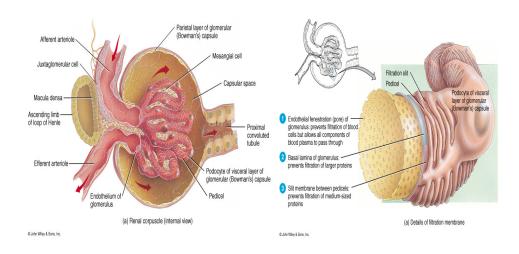
Basic Functions of a Nephron



Nephrons perform three basic functions:

- 1. glomerular filtration
- 2. tubular reabsorption
- 3. tubular secretion

The Glomerular Filtration Membrane



The filtration membrane is the filtering unit of a nephron.

This endothelial-capsular membrane consists of:

- 1) the glomerular endothelium
- 2) the glomerular basement membrane
- 3) slit membranes between pedicels of podocytes

The Glomerular Filtration Membrane

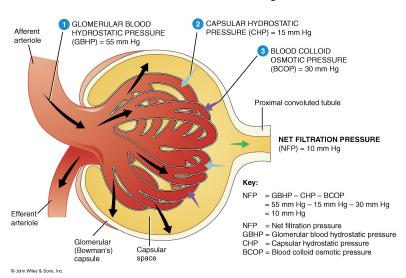
7

Filtration Pressures and Glomerular Filtration Rate

 Filtration Pressure is the force that drives the fluid and its dissolved substances through the glomerular filter

Net Filtration pressure NPF (or Net Hydrostatic Pressure NHP) is the difference between three pressures:

- 1. Glomerular (blood) hydrostatic pressure GHP or GBHP
- 2. Capsular Hydrostatic Pressure (CHP)
- 3. (Blood) Colloid Osmotic Pressure (BCOP)


The relationship can be expressed by

$$NPF = GBHP - (CHP + BCOP)$$

Glomerular Filtration Rate: amount of filtrate the kidneys produce each minute. (about 125 ml per minute)

Determined by a creatinine clearance test

Factors affecting filtration rate in the kidney

Regulation of Glomerular Filtration Rate Renal Auto-regulation

Regulation	Major Stimulus	Mechanism	Effect on GFR
Myogenic	Stretching of afferent arteriole walls due to increased systematic BP	Contraction of smooth muscles in afferent arteriole wall	Decrease GFR by constricting the lumen
	Decline in glomerular blood pressure	Dilation of AA and G. capillaries Constriction of EA	Increases GFR

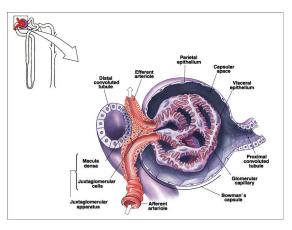
Regulation of Glomerular Filtration Rate Neural Regulation

Regulation	Major Stimulus	Mechanism	Effect on GFR
Tubuloglomerular feedback	Rapid increase in Na+ and Cl- In lumen at the macula densa due to increased BP	Decreased release of Nitric Oxide by JGA causing AA constriction	Decrease GFR and filtrate volume

Regulation of Glomerular Filtration Rate Neural Regulation

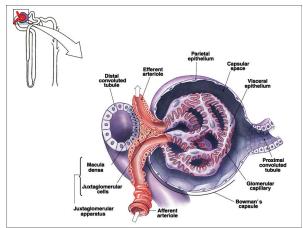
Regulation	Major Stimulus	Mechanism	Effect on GFR
Sympathetic Nerves (Autonomic)	Acute fall in systematic blood pressure. Release of norepinephrine	Constriction of afferent arterioles	Decrease GFR and filtrate volume to maintain blood volume

Regulation of Glomerular Filtration Rate Hormonal Regulation

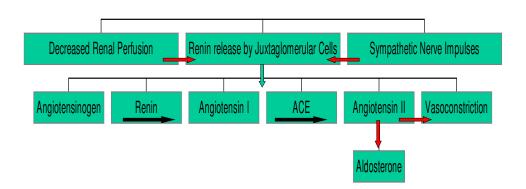

Regulation	Major Stimulus	Mechanism	Effect on GFR
Angiotensin II	Decreased blood volume or decreased blood pressure	Constriction of both afferent and efferent arterioles	Decreases GFR
Atrial natriuretic peptide	Stretching of the arterial walls due to increased blood volume	Relaxation of the mesangial cells increasing filtration surface	Increases GFR

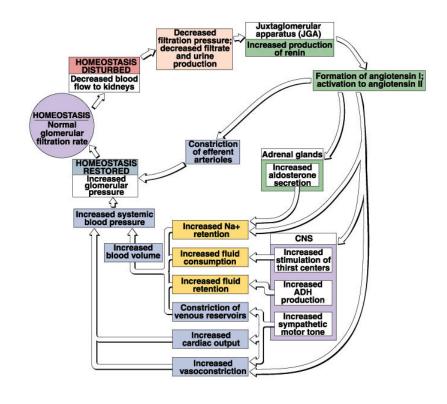
Regulation of Glomerular Filtration Rate Hormonal Regulation

Regulation	Major Stimulus	Mechanism	Effect on GFR
Antidiuretic hormone ADH	Increased Angiotensin II or decreased volume of extracellular fluid	Stimulate insertion of aquaporin-2 (water channels) In apical membrane or principal cells	Increases blood volume to return GFR to normal
Aldosterone	Secreted from adrenal cortex because of increased Angiotensin II levels	Increases reabsorption of Na+ and water by principal cells of the DCT collecting duct	Increases blood volume to return GFR to normal

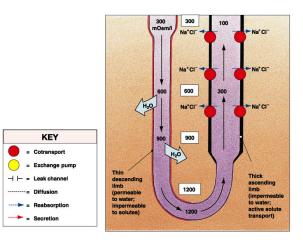

juxtaglomerular apparatus (JGA)

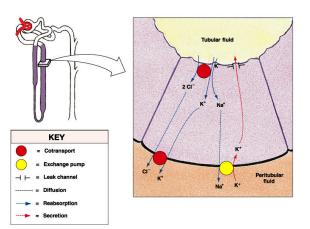
Consist of the juxtaglomerular cells of an afferent or efferent arteriole and the macula densa cells of the distal convoluted tubule. The JGA helps regulate blood pressure and the rate of blood filtration by the kidneys.



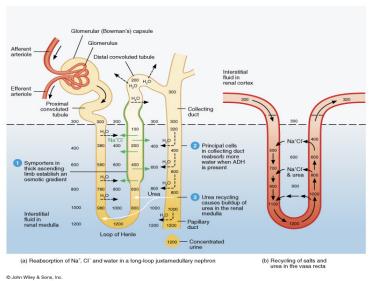

Angiotensin II Pathway

- 1. Renin is released to the blood by JGA cells due to decreased renal blood flow or perfusion.
- 2. Renin converts a plasma protein (angiotensinogen) into angiotensin I
- 3. Angiotensin-Converting Enzyme (ACE) in the lungs convertes Angiotensin I into Angiotensin II


Renin – Angiotensin - Aldosterone System


Urine Concentration via Countercurrent Multiplication

- Thin descending limb of Henle is permeable to water but not solutes
- Thick ascending limb of Henle is impermeable to water and solutes. Contains active transport mechanisms for sodium and chloride.



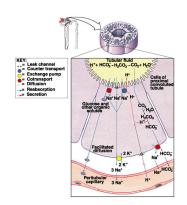
Urine Concentration via Countercurrent Multiplication

- Sodium and Chloride are reabsorbed by thick ascending limb into the peritubular fluid
- These ions elevate the medulla osmotic pressure
- This increases osmotic flow of water out of the thin descending limb
- Increased osmotic potential of tubular filtrate increases active transport in the TAL

Urine Concentration via Countercurrent Multiplication

Sons, I

Roles of the Different Nephron Regions in Urine Formation

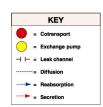

Proximal Convoluted tubule

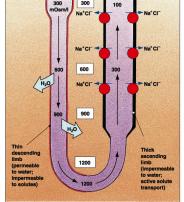
Reabsorption:

60%-70% of water (108 to 116 L/D) (obligatory water reabsorption)
100% of glucose and other sugars, amino acids, and some vitamins
60%-70% sodium and chloride, along with calcium, magnesium, phosphate, and bicarbonate

Secretion:

Hydrogen ions, ammonium ions, creatinine, drugs, toxins


Roles of the Different Nephron Regions in Urine Formation


Loop of Henle

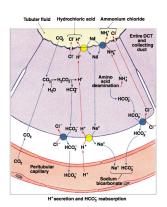
Reabsorption:

Descending limb
25% of the water
(obligatory water reabsorption)
Thick Ascending limb
20-25% of the sodium and
chloride to help maintain the

countercurrent system

Roles of the Different Nephron Regions in Urine Formation

Distal Convoluted Tubule


Reabsorption:

Up to 5% of water under ADH control (principle cells)
(Facultative water reabsorption)
Variable amounts of sodium and chloride under Aldosterone control (principle cells)

Variable amounts of bicarbonate (intercalated cells)
Variable amounts of Calcium controlled by parathyroid hormone

Secretion:

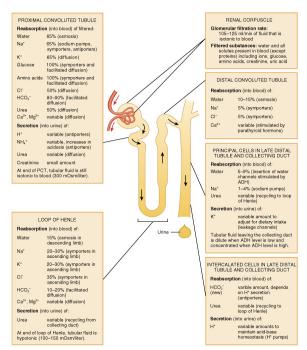
Hydrogen ions, ammonium ions, Creatinine, drugs , toxins

Roles of the Different Nephron Regions in Urine Formation

Collecting Duct

Reabsorption:

Variable amounts of water under ADH control (principle cells)
(Facultative water reabsorption)
Variable amounts of sodium and chloride under Aldosterone control (principle cells)
Variable amounts of bicarbonate


(intercalated cells)

Secretion:

Potassium and hydrogen ions

Summary of the roles of the different nephron regions in urine formation

